Quantum Distribution

Functions

for
Bosons, Fermions, & otherwise
Objects



How to do the Lagrange Multiplier
technique

Maximize a function subject to certain constraints on the dependent variables

function f(Xy, X, -..)
Constraint g(Xq, X5, ...)=C

Form new function F =f + A (g-C)
Maximize/Minimize it wrt X, X,, ...

Choose something for A based upon other information

http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf



http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf

Example

Minimize f=Xxy subject to constraint x2+y?=1

/ \ F=xy +A (X°+y>-1)
\/ set VF =0

\

(y+2AXx) + (Xx+21y) =0

dF/dx =y + 2\X
(1+2A0)y + (1+2A)x =0

dF/dy = x + 21y /

'S —y==X
X+y?=1 > Xx?+x°=1 > 2x*=1-> x=x0.707
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Harris 8.1
Thermodynamic Systems



Microinfo vs Macroinfo
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Microstates vs Macrostate

Very few
_ microstates are
"‘8@ > similar to this
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Probable Many.m!crostate.s
are similar to this
arrangement

=

collection of most probable microstates should be described with macio-parameters

P,V,N,T,E,... S=kglnW



« Systems where microscopic approach is limited

— Solids
— 3-body problems in ‘planetary’ motion
— Hartree-Fock Procedure V V V \r/
* Multielectron atomic structure
* Nuclear Structure /09
e e e .

Each system has it's own macroscopic parameters,
but the set always includes

Nit» Ewww  Ave Kinetic Energy (~T).



What is most likely arrangement of
4 balls In 2 bins?
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BACKGROUND PROBABILITY
IDEAS



Given N=5 objects and p=1 bin;
How many ways can one put n=2 objects in the bin ?
(in a definite order)

© 000 @

/

(N=n)!



Given N=5 objects and p=1 bin;
How many ways can one put n=2 objects in the bin ?
(without regard to order)

© 000 @

/

N |
(N=n)! n!




Given N total objects and p total bins;
How many ways can one put
n, objects in bin #1
n, objects in bin #2
n; objects in bin #3

* * %

(without regard to order)




*



Probability of finding a particular arrangement:



Probability Summary

N total objects
p total states

P *
s small
Ny N!
prob = norm
n, n!n,t---n!
_const
N,




Harris 8.4
BOLTZMANN DISTRIBUTION

Probability of finding a particular energy ¢
subject to the constraint that there are

N total particles and E, , energy












Sterling’s Formula

o (]

€

Inn! ~ *In2zn + nlhn = n
2

The second term is largest by at least a parsec

Inn! = n Inn












note: resetl+ o 2> a









To discover the expression for the normalization constant (assume smooth spectrum)

OK, sowhatis 3 =?



Temperature is defined in terms of the average kinetic energy



Boltzmann Distribution

Probabillity of finding a particular energy ¢

subject to the constraints that there are

N total particles and fixed E,,
—i
T
2 | | | " rew | e
a al| 1000 { —2.84
b| 5000 | —042
5 c| 10000 0.62
1\ . 1
Prob(s) = — e
e« = 1/KT
3

& (eV)



How to normalize the
Boltzmann Distribution

and

Density of States



We normalized the Boltzmann
distribution assuming all energies
could occur

Prob = g« e—E/kT = A e-E/kT

o0

1=IAe_g/de5

0

= A=AT



Many, many possible states,
closely spaced In energy

Just did this



Finite number of states,
but no restriction on filling




Density of States
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Density of States
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Q)

Q)

Calculating Averages

= j Q(¢) N(g) D(£)de

_ | Q(e) N(#) D(e)de

j N(¢) D(g)de

if were motivated enough
to normalize ND before-
hand

1= j N(g) D(£)de

If decided to do it later



Many, many closely-spaced states,
but with restriction on filling

Just did this

N(&)



Finite number of states,
but with restriction on filling

D(¢) is funky notation, so use w;,






Harris 8.2-8.3
Macroscopic Descriptions

Entropy & Flow of Time

James Sethna @ Cornell: Chapter 5
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity. pdf

http://www.tim-thompson.com/entropyl.html

http://en.wikipedia.org/wiki/Entropy %?28statistical thermodynamics%29
http://en.wikipedia.org/wiki/Entropy

http://en.wikipedia.org/wiki/Ludwig Boltzmann
http://en.wikipedia.org/wiki/Satyendra Nath Bose
http://en.wikipedia.org/wiki/Fermi_distribution



http://en.wikipedia.org/wiki/Entropy_%28statistical_thermodynamics%29
http://en.wikipedia.org/wiki/Entropy
http://en.wikipedia.org/wiki/Ludwig_Boltzmann
http://en.wikipedia.org/wiki/Satyendra_Nath_Bose
http://en.wikipedia.org/wiki/Fermi_distribution
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.tim-thompson.com/entropy1.html

Types of Entropy

Entropy is what an equation defines it to be.
Wiki: Carnot

 Thermodynamic Entropy

ds = 92
H (8-3) T

« Statistical Mechanics Entropy
S = kg In@#states) or —kg(In p;)=—k Zp, In p,
H (8-2)

 Information Entropy

S = log,(#combinations) or <Iog2 pi>=2pi log, p;

http://en.wikipedia.org/wiki/Entropy_%?28statistical_thermodynamics%29



Shannon quote (1949).

The theory was in excellent shape, except that he needed a
good name for “missing information”. “Why don’t you call it
entropy”, von Neumann suggested. “In the first place, a
mathematical development very much like yours already exists
in Boltzmann's statistical mechanics, and in the second place,
no one understands entropy very well, so in any discussion you
will be in a position of advantage.

Wiki: History of Entropy



Stat Mech Example
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Stat Mech Example

S = —kg{lnp) = kgD plnp
i
p, = 0.167
p, =0.25 ps =0.25 . :
: : @9 |® O
: 22 o !% o @ 9| 909
., 9@ @ |0 : 1
pi_l : : Q; @ ! Q Q: Q
QD %9 2|02 @ @9 (@ @
N=4 9 _ ° @9 9
Na=0 p,=025 - p,=0.25 @ @9 @
Ne=2
[ 0.251n(0.25) |
+0.25 In(0.25)
_ S = k.. S =—k 610.167In(0.167)}
S=—kg 1In(1) 51 +0.25 In(0.25) i
-0 +0.25n(0.25)
S=1.79 kg

S=1.38Kksg



Flow of Time

©\®

P || P8

e _||®

Changes between microstates are generally easily reversible.

It is not necessarily likely that changes between macrostates can be reversed .






Harris 8.6
Back to Probability Distributions



COMPARING PROBABILITIES Y*¥
for
Indistinguishable Boson/Fermion Particles
to those
without worrying about B/F requirements




Distinguishable Particle Probabilities

One patrticle in a state
Vit = LPB(]-)
Prob =W, Ws = Wp(1) " Wp(1) =1
Two particles in a state 3

Wit = LPB(:L) ‘PB(Z)
Prob = ‘PB(l)* ¥y(1) ‘PB(Z)* ¥e(2) =1

Three particles in a state 3

Wiot = (1) Wp(2) Wp(3)
Prob = \I’B(l)* ¥p(1) ‘PB(Z)* ¥s(2) ‘I’B(B)* Y(3) =1

So what ? Nothing special happens here.....



Indistinguishable Boson Probabilities

One patrticle in a state

Vit = LPﬁ,(]-)
Prob = W, W = Wp(1) " Wp(1) = 1

Two particles in a state 3
Wi = (SI¥p(L) ¥p(2) + Wy(2) Wy(D)] = 2 [T (1) ¥y(2)

Prob= |2 2 ¥ ¥,@[? =2 = 2!

Three particles in a state 3

Wi = [E[ (1) WD) ¥3) + ... ]
Prob=| 6 |2 W,(1) ¥,(2) ¥,3) |2 = 6 = 3!
If there are already n bosons in a state,

the probability of one more joining them is enhanced by (1+n)
than what the prob would be w/o indistinguishability requirements



Indistinguishable Fermion Probabilities

One patrticle in a state

Vit = qjﬁ(l)
Prob = W, Wi, = (1) " Wp(1) =1

Two particles in a state 3
Wi = (S[p(1) Pp(2) - Wy(2) Wy(1)] = O

Prob= 0

If there are already n fermions in a state,
the probability of one more joining them is enhanced by (1-n)
than what the prob would be w/o indistinguishability requirements






Principle of Detailed Balance

For two states of a system with fixed total energy,

" o o00e0—
Ny 00006066 €1

Where the particles can jump between states by some unknown mechanism,

Rate of upward going transitions = Rate of downward going transitions

n, Rate 5, = n, Rate ,5,

ﬂ R2—>1
r]2 Rl

—2



Detalled Balance

distinguishable particles
(but with no other special requirements)

n, R1—>2 = R2—>1
ﬂ — R2—)1
n, R1—>2

Since by the Boltzmann distribution n ~ e=¢kT

e_g]_ /KT

€

N R2—>l

1
—&5 [KT
” r12 Rl—>2

Gives us the ratio of the two transition rates



Detalled Balance
iIndistinguishable bosons

boson boson
nl —2 o n2 R2—)1

boson transition probabilities areenhanced R’ =(1+n,)R,,,

n (1"' nz) R1—>2 = N (1"' nl) R2—>1

n(@+n) _ Ry, _ e
n, (1+ nl) I:21—>2 e “
n1 egllkT _ nz egz/kT




n1
1+n,

N,

& KT

& KT

_ n2 egzlkT

1+n,

L & R sides are unrelated except for Temp

someconst = e™“

—a— & KT

(1_|_ nl) e—a—gllkT



(1_|_ nl) e—a—gllkT

—a—& KT

e + ne

e—a—gllkT

e—a—gllkT

1— e—a—gllkT

1

ea+81/kT _1

—a— & KT



Bose distribution function

Probable # bosons of an energy ¢
In a system of fixed total energy at a temperature T

. T(CK)

a 1000
b| 5000
c | 10000

coo | R




Detailed Balance
Indistinguishable fermions

fermion . fermion
nl R1—>2 o n2 R2—)1

fermion transition probabilities arede —enhanced R/*7™"

N (1_ nz) R, = N (1— nl) R,
& KT

N N
1 e _ 2 e
1- n]_ 1- n2

&, [KT

1
eO!-l-El/kT —|—1

>
| —
|




Fermi distribution function

Probable # fermions of an energy ¢
In a system of fixed total energy at a temperature T

n(e) = !

eaeg /KT

+1

15 | I I | 1 [ T (oK) o

1000 | —3.15

a0 o0







SUMMARY
of
Distribution Functions

and
what iIs this « thing?



Collected Distribution Functions

Boltzmann N (5) = 1g/kT
e“e
1
Bose n(g) =
e“e -1
1
Fermi n(e) = KT
e“e +1




Normalization Interpretation
f n(e)de = 1

1
Boltz 4 (‘9) - o7 1T e = KT
. o = a real mess
BOSG 4 (5) - e“eg /KT _1 e’ ~ Ntot (Zﬂ-h)g *
V (22 mkT)*?
o = a real mess
1 3
Ferml n (‘9) = o € KT e N ot (Zﬂh) x*
e e +1 v (272'ka)3/2

* For N, free particles strictly confined to a 3-D region of space of volume V.



Chemical Potential Interpretation

u=—-oa KT
1
BOItZ n (8) = o (e —u)/KT e = e—u/kT
1
Bose 4 (8) - e(a—,u)/kT 1 es = e—M/kT

1
Fermi n(e) = o G0k 1 o = @-wkT




Problem: chemical potential is not an easily
measured or well understood quantity
(by most people)

— Defn: How the total energy of a system changes as
one changes the count of objects

— How does the total NRG change if we replace a

10 eV photon with two 5 eV photons? Ans: it doesn’t, p=0
this system is called a photon/phonon gas

— How does the total NRG change if we replace a KE
10 eV proton with two 5 eV protons? Ans: some

— How does the total NRG change if we replace a KE
10 eV H-atom with two 5 eV H-atoms? Ans: a v.s. amount



50% Probability Interpretation

At what energy is the probability 50% of it's maximum value?
(called the Fermi energy ¢ )

Boltz Not used

Bose Not used
when ¢ = g

1
- n(e) = — 1 B 1
Fel‘ml e( DT e O/ 1 = E







Summary of Common Usage

. Probability
Boltz n(e) = arg? /K e = KT
. Chemical Potl
Bose n (5) = o G-mIKT _q L
. Fermi Energy
Fermi | "% = oo £




normalization

B O ItZ mann interpretation
e* = 1/KT
—i
—t
c
2 l ! [ | 70| @
’ al| 1000 | —2.84
b| 5000 | —-042
c| 10000 | 0.62
—




t{e )

chemical
interpretation

B OS e for phonon gas

n=0

T(CK) |«
1000 { O
5000 | 0

10000 | ©




1, value

I:e rml interpretation

o = —¢g/ KT
| a
b kT
p————— ¢
= i d
1.5 | | t | ‘ | T(OK) a
a | =—oo
b 1000 | =3.15
c
d

& (eV)



n&)

0 1 2 3 4 5
EIkT

Figure 11-4 The Boltzmann, Bose, and Fermi distribution functions plotted versus E1kT
for two different values of «, —0.1 and —1.0. it should be noted that the dashed curves, if
moved to the left (—0.1) — (—1.0) = 0.9 units, would coincide exactly with the solid curves.
This observation may provide some further insight into the physical interpretation of «.






EXAMPLES OF QUANTUM

GASES & FLUIDS
Harris 8.7-8.10

* Density of States in a 3D bound system (massive objects)
* Electron Gas: Conduction Electrons

* Photon Gas: Blackbody Spectrum

« Gas Laws: ‘PV=nRT

 Bose Gases: 4He

* Bose-Einstein Condensates

« Specific Heat of Solids

* Laser Systems



Density of States
In 3D confined system

Harris 8.7



In a 3D slab of metal, e’s are free to move

but must remain on the inside
0

? x

h2
—~ V°¥Y+0¥Y = EY
2m

Solutions are of the form:

¥ = P(xyz)= \/g sink, x sink,y sink,z

With nrg’s: L




AtT =0, all states are filled  »—— ) S
up to the Fermi nrg - a e

c| 5000 | =151
d| 10000 | —0.69

2 dobe
Eformi 8m Lz X + y + )

A useful way to keep track of the states that are filled Is:

nf+n§+n22 = nzmax




h? )

nmax

gfermi T 8m Lz

total number of states up to an energy &m:

47 nmax

N= 2 ! (V"é‘#me) = 2

sphere

h2

213 242 2/3
- 3N , 7 7 3 N
fermi 7Z'V m 272_\/5 V

Harris (8-43)

I
7~ N\

3am



Sample Numerical Values for Copper slab

N
— = 8.96gm/cm? 1/63.6amu 6e23 = 8.5e22 #/cm3 = 8.5e28 #/m?3

V

213

h* (3N _

Etormi 8m [ V] Sfermi ~ rev
T

n = 43e7

max

> Efermi — 7eV

E :ng ~0.04 eV at 300K




TotKE = | & N(g) D

O 38
—_

Density of States

How many combinations of are there
within an energy interval e to ¢ + deg ?

5 2/3 !
gfermi — h 3 N ;
Sm\{ 7V 8
3/2
v (T
3 h*

AN 3(8me)’’ 8m
R I S

dN 8V 2 2mY
E - (st)l £12 1/2

= > E :
2473 Harris
7T ;1 \/EE (8-40)

g)de



Electron Gas
Conduction Electrons

Harris 8.7



At T # 0 the electrons will be spread out among the allowed states

How many electrons are contained in a particular energy range?
N(e) D(e)

probability of number of ways to have
this energy occuring a particular energy

1 3tV

e(e—gf)/kT +1 h3

(2m3)1/2 12



N(@) N©&)
—_ - —_ - "
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- - - -
v e
0 ¢ 9
n(é&)
n(&) | L kT
1 e . — — t — - — _[ 1_-_..._ ..... \
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I éa | S
0 &y 0 Er
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Unfilled levels Unfilled levels
Fitied levels x Filled levels \’i
0 & ¢
T=0 T>0

Figure 13-4 Left: The distribution with energy of conduction electrons in an unfilied band
sy IN @ solid at T = 0, according to the free electron model. Right: The same at

of width &
a higher temperature.



Distribution of States:
Simple Free-Electron Model vs Reality

n(&) N&)

Unfilled levels
Filled levels \"§

N(&)

A
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Photon Gas

Harris 8.8



Photon Gas -- Harris 8.8

@ Tot KE = g N D g)dg
/ Number of ways

distrib fn to have a particular
energy



Photon Gas

Tot KE = T ¢ N(g) D(g)ds

\

Bose D(e) de = 87[:/ % g” de
c’ h
1
N(e) = —
NE ﬂ)/kT\lA /; hv
=20
D(v)dv = 8:;/ v2dy

: 1 B

g=hv=pc=hkc=2—hkc V

" k? dk dQ,
Jdo=az (27)’ =)
Factor of 2 for polarization states ~—/




Photon Gas

Tot KE = T ¢ N(g) D(g)ds

integrand is the
~ intensity

at an energy ¢

8reide
(27hc)|e”* —1

a.k.a. Planck’s Blackbody Spectrum




Photon Gas

Tot KE = T ¢ N(g) D(g)ds

G =5.6/E-8

872- 83 d E 18" : : :4——Visible region—»
3] /T _ T .‘
2rrhe) e’ —1 |
ol |
Stefan-Boltzmann Law S osl I?
Radiated Intensity = ¢ T4 W/m? 5 . |
.6 —
|
|
[
|

0.4

0.2

|

!
Wien Displacement Law i'
Apax 1T = 2.898E-3 m*K 0 2 2 5 -

max
Frequency {104 Hz]

FIGURE 5.9: Planck’s formula for the blackbody spectrum, Equation 5.113.



‘Ideal’ Gas Laws



GASES ‘PV=nRT
Boson / Fermion / don’t care

Tot KE = I ¢ N(g) D(g)ds
0 \
/ Number of ways
distrib fn to have a particular
energy
<KE> _ Tot KE

tot



don’t care Gases

N(e) = Boltzmann distrib

3
KE) = —KkT
(KE) = 3

Y2 KT KE per degree of freedom



Boson Gases

N(e) = Bose distrib

Small 10> at STP

Derivation assumes gas
lives in 3D box, infinite square well

3 1 N, (27z#)
KE) = ZkT |1- o
< > 2 25/2 V (272'ka)3/2

Harris (8-42)



Boltz

T(°K) | «
1000 | —2.84
5000 | ~0.42

10000 | 0.62

& (eV)

(o)

Bose

T(°K) | a
1000 { O
5000 | 0

10000 | 0

3




Fermi Gases

N(e) = Fermi distrib

o Small 10 at STP
Derivation assumes gas
lives in 3D box, infinite square well /

3 1 N, (27#)
KEY = 2kT |1 tot
(KE) 2 " 2°'2 V(22 mkT )*'?




—a

Boltz

T(°K) | «
1000 | —2.84
5000 | ~0.42

10000 | 0.62

& (eV)

kT

15

&0 o8

T (°K) a
0 - o0
1000 | —3.15




Can we find a gas that would exhibit Boson effects ?

3 1 N \27h
<KE> - EkT 1- 2572 \ ( ( ;3/2

small mass m, low Temp, high density N,,/V

H, at condensation point 20 K e ~1/100

He at condensation point 4.2 K e* ~1/7



Liquid He

Phonon gas — intra atomic interactions

helium
A
common 5
o
S S -
® _ Solid
= critical o .
- point % 4
Loq (bcc .
= MNormal Liquid — 26 atm
0 - 3 o
0K Temperature @
- Gas

3 4 5 b
Temperature (K)

* Very low viscosity
« Density = 0.125 g/cc (1/4 of what expected)
* nrg of thermal motion ~ nrg of inter-atomic effects

0.5 meV



Liquid He  below T,

Not really a gas, but hey...

helium
[
common E"
o
3 5_
® _ Solid
T critical o H
& point % 4 (hep
ik
gas = 31 9% Normal Liquid B am
0 - @ 2
0K Temperature @
1 | supertluid

. Gas
ORI R
Temperature (K)
« Heat is conducted through liguid w/o thermal resistance
(drops by 10°at T,)
« Viscosity of fluid drops suddenly ( drops by 10° at T,)
* Bulk ordered mass motion. Creep at ~ 30 cm/s



2 K,

Below 4
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(a) (b) _ s
Figure 11-9 The creeping motion of a film of liquid He? below the transition temperature

K. Mendelssohn has written of the film flow as follows:

“If the beaker is withdrawn from the bath, the level will drop until it has reached the level
of the bath. If the beaker is pulled out completely, the level will still drop, and one ¢an see
little drops of helium forming at the bottom of the beaker and falling back into the bath. This
is the sort of thing that makes one look twice and rub his eyes and wonder whether it is quite
true. I remember well the night when we first observed this film transfer. It was well after
dinner, and we looked around the building and finally found two nuclear physicists still at
work. When they, too, saw the drops, we were happier.”



* Liquid Helium Film Creep

— http://www.youtube.com/watch?v=fglhuRoaJdU

» Helium below i-point

— http://www.youtube.com/watch?v=TBi908sct U
— http://www.youtube.com/watch?v=YK|FPpuK-Jo

* S



http://www.youtube.com/watch?v=fg1huRoaJdU
http://www.youtube.com/watch?v=TBi908sct_U
http://www.youtube.com/watch?v=YKjFPpuK-Jo

wikipedia

Helium | has a gas-like index of refraction of 1.026 which makes its surface so
hard to see that floats of Styrofoam are often used to show where the surface
IS.[5] This colorless liquid has a very low viscosity and a density 1/8th that of
water, which is only 1/4th the value expected from classical physics.[5] Quantum
mechanics is needed to explain this property and thus both types of liquid helium
are called quantum fluids, meaning they display atomic properties on a
macroscopic scale. This is probably due to its boiling point being so close to
absolute zero, which prevents random molecular motion (heat) from masking the
atomic properties.[5]



http://en.wikipedia.org/wiki/Index_of_refraction
http://en.wikipedia.org/wiki/Styrofoam
http://en.wikipedia.org/wiki/Helium#_note-Encyc_Chem_Elem
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Classical_physics
http://en.wikipedia.org/wiki/Helium#_note-Encyc_Chem_Elem
http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Helium#_note-Encyc_Chem_Elem

wikipedia

Boiling of helium Il is not possible due to its high thermal
conductivity; heat input instead causes evaporation of the
liquid directly to gas.

Helium Il is a superfluid, a quantum-mechanical state of matter with strange
properties. For example, when it flows through even capillaries of 10-7 to 10-8 m
width it has no measurable viscosity. However, when measurements were done
between two moving discs, a viscosity comparable to that of gaseous helium was
observed. Current theory explains this using the two-fluid model for Helium Il. In this
model, liquid helium below the lambda point is viewed as containing a proportion of
helium atoms in a ground state, which are superfluid and flow with exactly zero
viscosity, and a proportion of helium atoms in an excited state, which behave more
like an ordinary fluid.[6]

A short explanation for the phenomenon would be that in this state, the temperature
of the Helium is so low that almost all Helium atoms are in the lowest (quantum
mechanical) energy state. Since energy can only be lost in discrete steps, and
atoms in the lowest state cannot lose any energy, gravity and friction have no effect
on single atoms.


http://en.wikipedia.org/wiki/Thermal_conductivity
http://en.wikipedia.org/wiki/Evaporation
http://en.wikipedia.org/wiki/Superfluid
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Ground_state
http://en.wikipedia.org/wiki/Helium#_note-1

Bose Condensates -- «inda Harris 8.7

http://www.colorado.edu/physics/2000/bec

Java Applet: Thermal Box

Java Applet: Thermal Quantum Well -

_ _ ® Some atoms in a
Java Applet Evaporative Cooling BEC condensate

Some very cold atoms

Animated gif of Condensation

Interference of Two BEC
Manipulation of BEC by Optical Lattices
Quantum Computing
‘Slow Light 17 m/s



http://www.colorado.edu/physics/2000/bec
http://www.colorado.edu/physics/2000/bec/what_it_looks_like.html
http://www.colorado.edu/physics/2000/bec/evap_cool.html
http://www.colorado.edu/physics/2000/bec/what_is_it.html
http://www.colorado.edu/physics/2000/bec/temperature.html

Specific Heats of Solids

Harris 8.10



SPECIFIC HEAT of Solids at Normal
Temps

KT of Tot E (=KE+U) per dof

(Epe) =3(KT)N =3NKT =3RT

Specific Heat

c, =Bl g

' dT

law of Dulong & Petit



Specific Heat of Solids at Lower Temps
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Figure 11-5 The measured specific heat at constant volume, as a function of temperature,
for several materials. Horizontal line I represents the Dulong-Petit law, and curve II repre-
sents the predictions of the Debye theory.

* Fe ®=465K
1) Einstein treatment - incorrect T dependence e Al ®=395K

2) Debye treatment R Ag ®=210K



Classical: Dulong & Petit

(Ee) =3(KT)N =3NKT =3RT

Einstein’s approach: fudge it with Planck’s bb distribution

hv

hv/kT _q

KT —
e

But it didn’t get the very low temp C,, correct

Peter Debye worked it out with the distribution functions



Specific Heat of Solids at Lower Temps
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(Debye model)
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Laser Systems
Harris 8.9

1. Two State System
2. Forcing a Population Inversion
3. Examples

Desired outcome:
Light Amplification by Stimulated Emission of Radiation



Two State Detalled Balance

E,

e=AE=¢,—-¢g

Ey

Rate, = A,,N, + By, N, N(¢)D(¢)

stim

Rate. = B,. N, N(¢)D(e)

abs




Rate, N, Aspon

1 =
Rate. N, B, N(¢)D(¢) N, B

—&, KT
N2 B =% :e_(gz_gl)/kT :e—g/kT

) hic® 1
= ") 8V &



Rate, A, h’c’ 1
Rate, B, 82V &’

(1_e—g/kT) n Bitin Sy
B

abs
Apon PC® 1 .
N, B, 87V &°
UV e eeeee—
Bstim — 1
Babs

Incoming photon just as likely to knock one down as knock one up
-- as long as system is in equilibrium.

Light Amplification by Stimutated Emission of Radiation




Back up to:

Rate¢: Nz ASpon n Nz B
Rate, N, B, N(¢)D(e) N, B

stim

abs

Ratei — & (eg/kT _1) n Y2
Rate, N,

N
Light Amplification by Stimulated Emission of Radiation —— —%>>1



History of Light Amplification

1953 Townes, Gordon, Zeiger: microwave amp
1955 Basov, Prokhov: 3 state

1957 Townes, Schawlow: change to optical
1957 Gould: design sketches

1959 Gould: “laser” and practical apps

1960 Maiman first working laser

1960-1987 Gould vs Townes court battles



Mechanisms for “pumping” a
Population Inversion N, >> N,

e | fast
Metastable t=long

Xe Flash lamp B
Electrical discharge
Collisional excitation: HeNe
Laser of another frequency
Chemical Laser fast
Excimer Laser
Q-switching

Solid State Semiconductor
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Ruby Laser

Theodore Maiman 1960

«  CrinAl,O4

* Ruby ends flat to 1/3 A

* Ruby ends polished to form
Fabry-Perot

« Xe flash lamp
e Cr*t* absorbs ~550 nm
e Cr*** metastable ~3 ms

blue band

green band

TN

3 ms

http://laserstars.org/history/ruby.html



http://laserstars.org/history/ruby.html

http://lwww.recycledgoods.com/item/18303.aspx

HeNe game http://phys.educ.ksu.edu/vgm/html/henelaser.html
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http://www.shopeio.com/inventory/details.asp?id=953



http://phys.educ.ksu.edu/vqm/html/henelaser.html
http://www.shopeio.com/inventory/details.asp?id=953

HENe Ezng~o.04ev at 300K
20.61 eV 20.66 eV
1S, = > 20.30 eV
1s2s S A 4p
S
L i t 19.78 eV
[
3
i i 18.70 eV P
|1
|1
[
[ |
[ |
|
i .
N | 16.70 eV
|1 :
1s1s 5 v 2
He Ne
1s? 15225%2p°

hitp://repairfag.ece.drexel.edu/sam/MEOS/EXP06.pdf good HeNe details, most of which are correct
http://technology.niagarac.on.ca/people/mcsele/lasers/LasersNeon.html



http://repairfaq.ece.drexel.edu/sam/MEOS/EXP06.pdf
http://technology.niagarac.on.ca/people/mcsele/lasers/LasersNeon.html
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Fig. 3: The most important laser transitions in the neon
system

http://repairfaqg.ece.drexel.edu/sam/MEOS/EXP06.pdf HeNe details



http://repairfaq.ece.drexel.edu/sam/MEOS/EXP06.pdf

‘HF’ 2.7-2.9 um

Chemical Lasers

Mid-IR Advanced Chem Laser

‘DF’ ~3.8 um

ml

ethyl

L e Yy

NF;, ———

Performance:
1980 ~MW for <70 sec
1997 USAF test against satellite @ 430 km
2006 pgm funding downgrade

MIRACL http://www.fas.org/spp/military/program/asat/miracl.htm

http://en.wikipedia.org/wiki/Boeing YAL-1



http://www.fas.org/spp/military/program/asat/miracl.htm
http://en.wikipedia.org/wiki/Boeing_YAL-1

The End



