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How to do the Lagrange Multiplier 

technique

• function        f(x1, x2, …)

• Constraint   g(x1, x2, …)=c

• Form new function F = f + l (g-c)

• Maximize/Minimize it wrt x1, x2, …

• Choose something for l based upon other information

Maximize a function subject to certain constraints on the dependent variables

http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html

http://www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf

http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf


Example

Minimize  f = xy   subject to constraint x2+y2=1

F = xy  + l (x2+y2-1)

dF/dx = y + 2lx 

dF/dy = x + 2ly

0Fset

(y+2lx) + (x+2ly) = 0

(1+2l)y + (1+2l)x = 0

y = -x

x2+y2=1   x2+x2=1   2x2 = 1  x=±0.707
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Harris 8.1 

Thermodynamic Systems



Microinfo vs Macroinfo

{ ri, pi, Li, Si, Ei,…}   i = 1,…, hugen number

Etot, P, V, T, N,…



Microstates vs Macrostate

Many microstates

are similar to this

Very few

microstates are

similar to this

Most

Probable

arrangement

collection of most probable microstates should be described with macro-parameters

P, V, N, T, Etot,…                                       S = kB ln W

#



• Systems where microscopic approach is limited

– Solids

– 3-body problems in ‘planetary’ motion

– Hartree-Fock Procedure

• Multielectron atomic structure

• Nuclear Structure

• e

Each system has it’s own macroscopic parameters,

but the set always includes

Ntot ,   Etot,    Ave Kinetic Energy (~T).



What is most likely arrangement of 

4 balls in 2 bins?



BACKGROUND PROBABILITY 

IDEAS



Given N=5 objects and p=1 bin;

How many ways can one put n=2 objects in the bin ? 

(in a definite order)

 !
!

nN

N

-



Given N=5 objects and p=1 bin;

How many ways can one put n=2 objects in the bin ? 

(without regard to order)

  !!

!

nnN

N

-

Note that after filling this box, there are  (N-n)  objects unused.



Given N total objects and p total bins;

How many ways can one put 

n1 objects in bin #1

n2 objects in bin #2

n3 objects in bin #3

* * *

(without regard to order)

*  *  *



*  *  *

n1 n2 n3



Probability of finding a particular arrangement:



Probability Summary
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Harris 8.4

BOLTZMANN DISTRIBUTION

Probability of finding a particular energy e

subject to the constraint that there are

N total particles and Etot energy
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Sterling’s Formula
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The second term is largest by at least a parsec
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note:  reset 1 + a  a







To discover the expression for the normalization constant (assume smooth spectrum)

OK, so what is b = ?



Temperature is defined in terms of the average kinetic energy



Boltzmann Distribution
Probability of finding a particular energy e

subject to the constraints that there are

N total particles and fixed Etot

kTe
kT

ob /1
)(Pr ee -

ea =  1/kT



How to normalize the

Boltzmann Distribution

and

Density of States



ee deA kT




-
0

/1

We normalized the Boltzmann 

distribution assuming all energies 

could occur

Prob = e-a e-E/kT = A e-E/kT

kT
A 1



Many, many possible states, 

closely spaced in energy

Just did this



Finite number of states,

but no restriction on filling

*

*

*



Density of States

valence

band

conduction

band

core

electrons



Density of States
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Calculating Averages
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if were motivated enough 

to normalize ND before-

hand

 eee dDN )()(1

if decided to do it later



Many, many closely-spaced states,

but with restriction on filling

Just did this



Finite number of states,

but with restriction on filling

*

*

*

w1

w5

w4

w3

w2

D(e) is funky notation, so use wi





Harris 8.2-8.3

Macroscopic Descriptions

Entropy & Flow of Time

http://en.wikipedia.org/wiki/Entropy_%28statistical_thermodynamics%29

http://en.wikipedia.org/wiki/Entropy

http://en.wikipedia.org/wiki/Ludwig_Boltzmann

http://en.wikipedia.org/wiki/Satyendra_Nath_Bose

http://en.wikipedia.org/wiki/Fermi_distribution

James Sethna @ Cornell:  Chapter 5

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf

http://www.tim-thompson.com/entropy1.html

http://en.wikipedia.org/wiki/Entropy_%28statistical_thermodynamics%29
http://en.wikipedia.org/wiki/Entropy
http://en.wikipedia.org/wiki/Ludwig_Boltzmann
http://en.wikipedia.org/wiki/Satyendra_Nath_Bose
http://en.wikipedia.org/wiki/Fermi_distribution
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.tim-thompson.com/entropy1.html


Types of Entropy

• Thermodynamic Entropy

• Statistical Mechanics Entropy

• Information Entropy

T

dQ
dS 

http://en.wikipedia.org/wiki/Entropy_%28statistical_thermodynamics%29

Entropy is what an equation defines it to be.

--
i

iiBiBB ppkpkorstateskS lnln)ln(#

i

i

ii pppornscombinatioS 222 loglog)(#log 

H (8-3)

H (8-2)

Wiki: Carnot

Wiki: boltz



The theory was in excellent shape, except that he needed a 

good name for “missing information”. “Why don’t you call it 

entropy”, von Neumann suggested. “In the first place, a 

mathematical development very much like yours already exists 

in Boltzmann’s statistical mechanics, and in the second place, 

no one understands entropy very well, so in any discussion you 

will be in a position of advantage. 

Shannon quote (1949):

Wiki: History_of_Entropy



Stat Mech Example

S = kB ln(#microstates)

S = kB ln(1) S = kB ln(4) S = kB ln(6)

S = 1.79 kBS = 1.38 kB

S = 0



Stat Mech Example
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BkSS=- kB 1 ln(1)

=  0

pi = 1

p4 = 0.25

p1 = 0.25 p3 = 0.25

p2 = 0.25

pi = 0.167

S = 1.38 kB

 )167.0ln(167.06BkS -

S = 1.79 kB



Flow of Time

Changes between microstates are generally easily reversible.

It is not necessarily likely that changes between macrostates can be reversed .





Harris 8.6

Back to Probability Distributions



COMPARING PROBABILITIES Y*Y

for 

Indistinguishable Boson/Fermion Particles 

to those

without worrying about B/F requirements



Distinguishable Particle Probabilities

One particle in a state b

Ytot = Yb(1)

Prob = Ytot
* Ytot = Yb(1) * Yb(1) = 1

Two particles in a state b

Ytot = Yb(1) Yb(2)

Prob = Yb(1)* Yb(1)    Yb(2)* Yb(2) = 1

Three particles in a state b

Ytot = Yb(1) Yb(2) Yb(3)

Prob = Yb(1)* Yb(1)   Yb(2)* Yb(2)  Yb(3)* Yb(3) = 1

So what ?       Nothing special happens here…..



Indistinguishable Boson Probabilities

One particle in a state b

Ytot = Yb(1)

Prob = Ytot
* Ytot = Yb(1) * Yb(1) = 1

Two particles in a state b

Ytot =      [Yb(1) Yb(2) + Yb(2) Yb(1)]  =  2       Yb(1) Yb(2) 

Prob =   | 2      Yb(1) Yb(2) |2   = 2 =   2!

Three particles in a state b

Ytot =      [ Yb(1) Yb(2) Yb(3) + …  ]

Prob = | 6      Yb(1) Yb(2) Yb(3) |2   =   6   =   3!

If there are already n bosons in a state, 

the probability of one more joining them is enhanced by (1+n)

than what the prob would be w/o indistinguishability requirements

2

1

2

1

2

1

6

1

6

1



Indistinguishable Fermion Probabilities

One particle in a state b

Ytot = Yb(1)

Prob = Ytot
* Ytot = Yb(1) * Yb(1) = 1

Two particles in a state b

Ytot =      [Yb(1) Yb(2) - Yb(2) Yb(1)]  =  0 

Prob =   0

If there are already n fermions in a state, 

the probability of one more joining them is enhanced by (1-n)

than what the prob would be w/o indistinguishability requirements

2

1





Principle of Detailed Balance

For two states of a system with fixed total energy,

Where the particles can jump between states by some unknown mechanism,

e2

e1

n2

n1

Rate of upward going transitions = Rate of downward going transitions

n1 Rate 12 =  n2 Rate 21

21
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n

n
transitions/sec
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particle



Detailed Balance 

distinguishable particles
(but with no other special requirements)
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Since by the Boltzmann distribution    n ~  e-e/kT

Gives us the ratio of the two transition rates



Detailed Balance 

indistinguishable bosons
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Bose distribution function
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Probable # bosons of an energy  e

in a system of fixed total energy at a temperature T 



Detailed Balance 

indistinguishable fermions
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Fermi distribution function
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Probable # fermions of an energy  e

in a system of fixed total energy at a temperature T 





SUMMARY

of

Distribution Functions

and

what is this   a thing?



Collected Distribution Functions

Boltzmann

Bose

Fermi
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Normalization Interpretation

Boltz ea = kT

Bose

a = a real mess

Fermi

a = a real mess
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This interpretation may not be so useful for Bose & Fermi distributions
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* For Ntot free particles strictly confined to a 3-D region of space of volume V.

*
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Chemical Potential Interpretation

Boltz ea = e-m/kT

Bose ea = e-m/kT

Fermi ea = e-m/kT
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m =  - a kT

A uniform description for all three distributions.

Used for Bose distribution.



• Problem: chemical potential is not an easily 
measured or well understood quantity             
(by most people)

– Defn: How the total energy of a system changes as 
one changes the count of objects

– How does the total NRG change if we replace a       
10 eV photon with two 5 eV photons? Ans: it doesn’t, m=0           
.                 this system is called a photon/phonon gas

– How does the total NRG change if we replace a KE 
10 eV proton with two 5 eV protons? Ans:  some

– How does the total NRG change if we replace a KE 
10 eV H-atom with two 5 eV H-atoms? Ans: a v.s. amount



50% Probability Interpretation

Boltz Not used

Bose Not used

Fermi

when e = ef
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At what energy is the probability 50% of it’s maximum value?

(called the Fermi energy ef )
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Summary of Common Usage
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Boltzmann
normalization

interpretation

ea = 1/kT



Bose  for phonon gas

chemical

interpretation

m = 0



Fermi
½ value

interpretation

a = -ef / kT







EXAMPLES OF QUANTUM

GASES & FLUIDS
Harris 8.7-8.10

• Density of States in a 3D bound system (massive objects)

• Electron Gas: Conduction Electrons

• Photon Gas: Blackbody Spectrum

• Gas Laws:   ‘PV=nRT’

• Bose Gases:  4He

• Bose-Einstein Condensates

• Specific Heat of Solids

• Laser Systems



Density of States

in 3D confined system

Harris 8.7
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In a 3D slab of metal, e’s are free to move 

but must remain on the inside
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At T = 0, all states are filled 

up to the Fermi nrg

 
max

222

2

2

8
zyxfermi nnn

mL

h
++e

A useful way to keep track of the states that are filled is:
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total number of states up to an energy efermi:
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2s+1  2 spin states

Harris (8-43)



Sample Numerical Values for Copper slab

V

N
=  8.96 gm/cm3 1/63.6 amu    6e23  =  8.5e22 #/cm3 =   8.5e28 #/m3

efermi = 7 eV
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Density of States

How many combinations of are there 

within an energy interval e to e + de ?
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Electron Gas

Conduction Electrons

Harris 8.7



At T ≠ 0 the electrons will be spread out among the allowed states

How many electrons are contained in a particular energy range?
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this assumes there are no other issues



Distribution of States:

Simple Free-Electron Model vs Reality





Photon Gas

Harris 8.8



Photon Gas  -- Harris 8.8
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Photon Gas
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Photon Gas
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Photon Gas
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Stefan-Boltzmann Law

Radiated Intensity = s T4 W/m2

s = 5.67E-8

Wien Displacement Law

lmaxT = 2.898E-3 m*K



‘Ideal’ Gas Laws



GASES  ‘PV=nRT’ 

Boson / Fermion / don’t care
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


0

totN

KETot
KE 

distrib fn

Number of ways

to have a particular

energy



don’t care Gases

N(e) = Boltzmann distrib

TkKE
2

3


½ kT KE per degree of freedom



Boson Gases

N(e) = Bose distrib
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Small 10-5 at STP

Derivation assumes gas

lives in 3D box, infinite square well

Harris (8-42)



Boltz Bose



Fermi Gases

N(e) = Fermi distrib
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Small 10-5 at STP
Derivation assumes gas

lives in 3D box, infinite square well



Boltz

Fermi



Can we find a gas that would exhibit Boson effects ?

small mass m,  low Temp,  high density   Ntot / V

H2 at condensation point  20 K       e-a ~ 1/100

He at condensation point 4.2 K       e-a ~  1 / 7
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Liquid He

• Very low viscosity

• Density = 0.125 g/cc  (1/4 of what expected)

• nrg of thermal motion ~ nrg of inter-atomic effects

common

helium

26 atm

0.5 meV

Phonon gas – intra atomic interactions



Liquid He     below Tl

• Heat is conducted through liquid w/o thermal resistance  
( drops by 106 at Tl)

• Viscosity of fluid drops suddenly ( drops by 106 at Tl)

• Bulk ordered mass motion.  Creep at ~ 30 cm/s

Not really a gas, but hey…

common

helium

26 atm



Below 4.2 K,

Heat is conducted without boiling.



Creep



• Liquid Helium Film Creep

– http://www.youtube.com/watch?v=fg1huRoaJdU

• Helium below l-point
– http://www.youtube.com/watch?v=TBi908sct_U

– http://www.youtube.com/watch?v=YKjFPpuK-Jo

• s

http://www.youtube.com/watch?v=fg1huRoaJdU
http://www.youtube.com/watch?v=TBi908sct_U
http://www.youtube.com/watch?v=YKjFPpuK-Jo


Helium I has a gas-like index of refraction of 1.026 which makes its surface so 

hard to see that floats of Styrofoam are often used to show where the surface 

is.[5] This colorless liquid has a very low viscosity and a density 1/8th that of 

water, which is only 1/4th the value expected from classical physics.[5] Quantum 

mechanics is needed to explain this property and thus both types of liquid helium 

are called quantum fluids, meaning they display atomic properties on a 

macroscopic scale. This is probably due to its boiling point being so close to 

absolute zero, which prevents random molecular motion (heat) from masking the 

atomic properties.[5]

wikipedia

http://en.wikipedia.org/wiki/Index_of_refraction
http://en.wikipedia.org/wiki/Styrofoam
http://en.wikipedia.org/wiki/Helium#_note-Encyc_Chem_Elem
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Classical_physics
http://en.wikipedia.org/wiki/Helium#_note-Encyc_Chem_Elem
http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Helium#_note-Encyc_Chem_Elem


Boiling of helium II is not possible due to its high thermal 

conductivity; heat input instead causes evaporation of the 

liquid directly to gas. 

Helium II is a superfluid, a quantum-mechanical state of matter with strange 

properties. For example, when it flows through even capillaries of 10-7 to 10-8 m 

width it has no measurable viscosity. However, when measurements were done 

between two moving discs, a viscosity comparable to that of gaseous helium was 

observed. Current theory explains this using the two-fluid model for Helium II. In this 

model, liquid helium below the lambda point is viewed as containing a proportion of 

helium atoms in a ground state, which are superfluid and flow with exactly zero 

viscosity, and a proportion of helium atoms in an excited state, which behave more 

like an ordinary fluid.[6]

A short explanation for the phenomenon would be that in this state, the temperature 

of the Helium is so low that almost all Helium atoms are in the lowest (quantum 

mechanical) energy state. Since energy can only be lost in discrete steps, and 

atoms in the lowest state cannot lose any energy, gravity and friction have no effect 

on single atoms. 

wikipedia

http://en.wikipedia.org/wiki/Thermal_conductivity
http://en.wikipedia.org/wiki/Evaporation
http://en.wikipedia.org/wiki/Superfluid
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Ground_state
http://en.wikipedia.org/wiki/Helium#_note-1


Bose Condensates  -- kinda Harris 8.7

http://www.colorado.edu/physics/2000/bec

Animated gif of Condensation

Java Applet Evaporative Cooling

Java Applet: Thermal Quantum Well

Java Applet:  Thermal Box

Interference of Two BEC

Manipulation of BEC by Optical Lattices

Quantum Computing

‘Slow Light’     17 m/s

http://www.colorado.edu/physics/2000/bec
http://www.colorado.edu/physics/2000/bec/what_it_looks_like.html
http://www.colorado.edu/physics/2000/bec/evap_cool.html
http://www.colorado.edu/physics/2000/bec/what_is_it.html
http://www.colorado.edu/physics/2000/bec/temperature.html


Specific Heats of Solids

Harris 8.10



SPECIFIC HEAT of Solids at Normal 

Temps

  RTNkTNkTEtot 333 

Specific Heat

R
dT

Ed
C

tot

v 3

law of Dulong & Petit

kT of Tot E (=KE+U) per dof



Specific Heat of Solids at Lower Temps

• Fe   Q = 465 K

• Al    Q = 395 K

• Ag   Q = 210 K

1) Einstein treatment  incorrect T dependence

2) Debye treatment



Einstein’s approach: fudge it with Planck’s bb distribution

  RTNkTNkTEtot 333 

Classical:  Dulong & Petit

1/ -


kThve

hv
kT

But it didn’t get the very low temp CV correct

Peter Debye worked it out with the distribution functions



Specific Heat of Solids at Lower Temps

    eeee

e

dDNKETot 
max

0

number of states

of energy e,

properly normalized

(Debye model)

Boltzmann

-- atom sites are distinguishable



Laser Systems

Harris 8.9

1. Two State System

2.  Forcing a Population Inversion

3. Examples

Desired outcome:

Light Amplification by Stimulated Emission of Radiation



Two State Detailed Balance
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Incoming photon just as likely to knock one down as knock one up

-- as long as system is in equilibrium.

Light Amplification by Stimulated Emission of Radiation

N2

N1
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History of Light Amplification

• 1953 Townes, Gordon, Zeiger: microwave amp

• 1955 Basov, Prokhov: 3 state

• 1957 Townes, Schawlow: change to optical

• 1957 Gould: design sketches

• 1959 Gould: “laser” and practical apps

• 1960 Maiman first working laser

• 1960-1987 Gould vs Townes court battles



Mechanisms for “pumping” a 

Population Inversion N2 >> N1

• Xe Flash lamp

• Electrical discharge

• Collisional excitation: HeNe

• Laser of another frequency

• Chemical Laser

• Excimer Laser

• Q-switching

• Solid State Semiconductor

Metastable t=long

fast

fast

xxxxxxx





Ruby Laser

• Cr in Al2O3

• Ruby ends flat to 1/3 l

• Ruby ends polished to form  

Fabry-Perot

• Xe flash lamp

• Cr+++ absorbs ~550 nm

• Cr+++ metastable ~3 ms 

Theodore Maiman 1960

green band

blue band

3 ms

http://laserstars.org/history/ruby.html

http://laserstars.org/history/ruby.html


HeNe

HeNe game  http://phys.educ.ksu.edu/vqm/html/henelaser.html

http://www.recycledgoods.com/item/18303.aspx

http://www.shopeio.com/inventory/details.asp?id=953

http://phys.educ.ksu.edu/vqm/html/henelaser.html
http://www.shopeio.com/inventory/details.asp?id=953


HeNe

http://repairfaq.ece.drexel.edu/sam/MEOS/EXP06.pdf good HeNe details, most of which are correct

http://technology.niagarac.on.ca/people/mcsele/lasers/LasersNeon.html

1s2s

1s1s

1S0

3S1

20.61 eV

16.70 eV

18.70 eV

20.30 eV

19.78 eV

20.66 eV

He Ne
2p

3s

4s

5s

4p

3p

KateVkTKE 30004.0~
2

3


1s22s22p61s2

http://repairfaq.ece.drexel.edu/sam/MEOS/EXP06.pdf
http://technology.niagarac.on.ca/people/mcsele/lasers/LasersNeon.html


HeNe

Ocean Optics -- Neon
5s

3p

4s

http://repairfaq.ece.drexel.edu/sam/MEOS/EXP06.pdf HeNe details

http://repairfaq.ece.drexel.edu/sam/MEOS/EXP06.pdf


Chemical Lasers

ethyl

NF3

*-F

DF

D2

He

MIRACL   http://www.fas.org/spp/military/program/asat/miracl.htm

Mid-IR Advanced Chem Laser

‘HF’ 2.7-2.9 um

‘DF’  ~3.8 um

Performance:

1980  ~MW for <70 sec

1997 USAF test against satellite @ 430 km

2006 pgm funding downgrade

http://en.wikipedia.org/wiki/Boeing_YAL-1

http://www.fas.org/spp/military/program/asat/miracl.htm
http://en.wikipedia.org/wiki/Boeing_YAL-1


The End


